

December 2, 2019

O2 Planning + Design Inc.
255 17th Avenue SW, Suite 510
Calgary, AB T2S 2T8
Enquiries please contact: Brian Horton, RPP MCIP (403) 2281336
brian.horton@o2design.com

Holtby Site Development Plan
\#2255-H02 Holtby Site Development Plan_Revision 6_2019.12.02
\#2255-H02 Holtby Site Development Plan_Revision 6_2019.12.02

Contents

Site and Policy Context
Environment
Utilities and Services
Transportation and Access
Appendix A - Transportation Impact Assessment
Appendix B - Risk Assessment / Emergency Response Plan
Appendix C - Water Well Tests

1 Site \& Policy Context

1.1 Introduction

The County of Vermilion River Municipal Development Plan requires a Site Development Plan to be prepared by a Registered Professional Planner when a proposed subdivision will create more than four (4) titles out of a quarter section. To fulfill this requirement (MDP 5.2.3), this Site Development Plan is prepared in support of plans to subdivide the property located at Lot 2, Block 2, Plan 0321016 NE 1/4 Sec 33, Twp 49, Rge 1, W4M.

The subject site is located approximately 5 kilometres from the centre of the City of Lloydminster, within the County of Vermilion River and the City of Lloydminster's Intermunicipal Development Plan (IDP) area (Figure 1 - Site

Context).

The IDP designates the site Urban Expansion (Central), as per Figure 2 - Intermunicipal Development Plan. In addition to the IDP, the subject site is regulated by both the Central Urban Expansion Area Structure Plan and the County of Vermilion River Land Use Bylaw.

1.2 County of

Vermilion River LUB

The Vermilion River Land Use Bylaw designates the site within the Industrial - Medium (M) District, as per Figure 3. The purpose of this district is to allow for the development of medium industrial uses that may require large areas of land and may be considered unsuitable to an urban area. This land use district provides the necessary conditions to achieve the development intent and, as a result, a land use redesignation is not required.

1.3 Intermunicipal Development Plan

The County of Vermilion River and City of Lloydminster Intermunicipal Development Plan designates the site Urban Expansion (Central). It is anticipated that the Central Urban Expansion Area will see the first stage of residential growth among expansion areas. In addition to residential, this area will include retail commercial, secondary commercial, and a minor potential industrial land component.

1.4 Central Urban Expansion Area Structure Plan

The purpose of the CUEASP is to guide the transition of a rural-urban area to an urban one. It also serves to accommodate a variety of rural commercial/industrial and highway-related development at the Plan's western edge.

The CUEASP is intended to operate in tandem with the IDP. In doing so, the CUEASP identifies policy from the IDP that pertains to the Central Urban Expansion Area. Policy that pertains to the subject site includes:
4.2(c) - Parce/s within the IDP area that are currently zoned for Lloydminster Fringe Business (B2), may continue with those uses identified in the County of Vermilion River Land Use Bylaw. New applications for subdivision and development are subject to any amendments to the land use bylaw as may arise from the implementation of this IDP.

We understand that the County requires new Area Structure Plan's prior to approval of a subdivision which would create more than four parcels out of a quarter section. In this case, the proponent wishes to subdivide into 5 parcels (see
Figure 5 - Outline Plan), however it is our understanding that a new/amended ASP is not required as the subject site falls within the existing Central Urban Expansion ASP and the proponent's intention is consistent with all applicable policies.

2.1 Existing Water Bodies

There is a water storage pond on the east boundary of the site with a surface area of approximately 0.62 ha . The pond is contained within utility right-of-way 032 1017. The pond is a shared fire water supply for this development and the adjacent development to the east. Approximately 0.19 ha of this pond is on the subject property, and 0.43 ha on the adjacent property.

2.2 Impervious Surfacing

The proposed development will transform the subject site from a largely undeveloped parcel into 6 individual lots that reflect the intention of the Medium Industrial (M) land use district. Table

1 highlights the anticipated changes to the subject site's surface area. Surfaced areas and building coverage amount to 86% of the site, which is consistent with the surrounding context.

2.3 Water Well Tests

Water well tests have been obtained for four wells. 2 of the wells (1501401 and 1500048) are on the subject property. The other 2 wells are located within 400 metres of the property. The results of these tests are provided in Appendix C.

2.4 Air Quality

No long-term air pollutants generated by this project are anticipated. Some dust may be generated during construction. Dust suppression by watering truck is expected and is a normal practice during construction.

2.5 Reserves

There will not be an environmental reserve allocated as part of this development. Requirements for municipal reserve may be met through cash-in-lieu.

Lot Coverage	Existing	Proposed
Building Coverage	2\%	20\%
Surfaced Areas	14\%	66\%
Landscaped Areas	0\%	10\%
Permanent Open Space \& Stormwater Management Areas (excluding required landscaping)	84\%	4\%
Total	100\%	100\%

Table 01: Lot Coverage

Fig. 04: Lot Coverage Context

3 Utilities \& Services

3.1 Utilities

Energy and telecommunications utilities are available to the subject site through main feeds along Spruce Hill Road. Utility easements will be required to service individual lots with power and telephone, via overhead utility lines.

Electrical utility distribution and servicing will be coordinated by ATCO Electric at the request of the developer.

Provision for natural gas distribution and servicing is designed and coordinated by the gas company at the request of the developer. ATCO Gas will provide natural gas distribution to the proposed development.

Telus Communications is the service provider for communication services to the subject site area.

3.2 Solid Waste

Brush and tree clearing will be required to develop the site. It is anticipated that brush and trees will be shredded and disposed of off-site

3.3 Potable Water

Municipal potable water is not available to the subject site. Each parcel will utilize on-site well water obtained through a provincially approved drilling program or a cistern in which hauled potable water may be stored for on-site distribution.

3.4 Stormwater

Stormwater management is accommodated by way of ditches on either side of the primary access road, a culvert transporting stormwater under the road, and a surface drainage swale travelling east-west through proposed lot 11 from the road to the existing stormwater detention pond.

As illustrated in Figure 9 - Drainage Plan, stormwater from all proposed lots is directed first to the central access road before being re-routed through the surface swale to the detention pond. The surface swale is accommodated in a 3.0 m drainage easement through lot 11. The intention is not to develop lot 11 at this time, rather, lot 11 is reserved for future expansion of the stormwater detention pond and associated infrastructure, as needed. Additionally, a 6.0 m access easement is proposed from the central access road to the detention pond. This access easement will accommodate an all-weather graveled access road.

The intention is for the existing pond to accommodate all stormwater management for the site. As such, no additional facilities (ponds) are proposed. At the detailed design / development permit stage, the project team will conduct stormwater modelling to determine the capacity of the pond. If it is determined that the size of the pond needs to be increased, this will be accommodated for in proposed lot 11.

Of note, pre- and post-development flows will be matched at the design stage.

Overflow from the detention pond is directed to the highway ditch by means of a surface swale in a registered utility right-of-way along the east boundary of proposed lot 10. Discharge to surface waters will be the normal stormwater discharge. There will be no waste water present in the discharge.

In addition to managing peak stormwater flows, the detention pond provides water supply for firefighting purposes. The detention pond is private and will be maintained by the land owner.

At this time, the project team has not calculated anticipated flows in the internal stormwater system. This, along with cross sections illustrating proposed culvert treatments, will be provided at the Development Permit / Detailed Design stage.

3.5 Waste Water

Municipal waste water collection services are not available to the subject site and surrounding area. Future owners of subdivided lots will be responsible for providing these services in a manner that meets municipal and provincial standards. Servicing is to be provided on-site for each lot created to the satisfaction of the County, Alberta Municipal Affairs, Safety Codes Council, and Alberta Environment and Parks.

It is proposed that sanitary sewerage systems will utilize septic tanks for pump and haul. Individual lot owners will be responsible for the collection and disposal of sewage.

4 Transportation \& Access

4.1 Site Access

Primary access to the site is by way of an internal cul-de-sac, accessed from Spruce Hill Road. This access road is not a dead end road and will service each individual lot (see Figure 8 - Outline Plan). No additional road widening requirements are anticipated.

To accommodate secondary emergency access, an access easement is proposed, beginning at the bulb of the internal cul-de-sac and terminating at the western property line. This is proposed as a $6.0 \mathrm{~m}(19.7 \mathrm{ft})$ easement, to be registered on Title, bisecting the southern portion of proposed lot 9. The proposed 6.0 m (19.7 ft) easement reflects the industry standard for emergency access roads. A gate will be installed at the western property line to provide access to the adjacent property in the event of an emergency.

As the roads are public roadways, the County of Vermilion River is responsible for maintenance.

4.2 Transportation Impact Assessment

WATT Consulting Group was retained to conduct a Transportation Impact Assessment (TIA) to inform this Site Development Plan. The findings and recommendations of this assessment are summarized below, with the full report provided as Appendix A.

Analysis was completed for the study area assessing the road network based on an existing (2017) scenario, an Opening Day (2021) scenario, and an Opening Day + 20 Years (2041) scenario. In all three cases, AM and PM peak hour traffic volumes are included.

Turning movement data (2017) was obtained from Alberta Transportation for the intersections of Highway 16 / Range Road 14 and Highway 16 / Range Road 13 (Figure 5- 2017 Traffic
Volumes). Highway 16 traffic volumes were grown at a rate of 2% for 4 years, based on historic growth at these intersections.

Vehicle trips to the site were intially estimated using the ITE Trip Generation Manual (General Light Industrial land use code), however the resulting trip rate (~425 trips per day) is high when considering the anticipated mix of uses and surrounding context. Instead, WATT Consulting Group conducted an 11-hour count at a similar industrial area nearby and then applied the collected trip rate to the subject site. Based on this exercise, the site is estimated to generate approximately 150 trips per day, with fewer than 20 trips during peak hours.

The inbound and outbound volumes were totaled, and percentages were determined for the PM and AM peak hour distribution. Anticipated 2021 and 2041 traffic volumes are shown in Figure 6 and Figure 7, respectively.

The TIA concludes that the transportation network around the site is able to accommodate the existing volumes with no capacity or delay concerns. The increase in traffic volume from this site, and background growth along Highway 16 did not significantly impact the operation of the study intersections. The increase in the

Fig. 05: 2017 Traffic Volumes

Fig. 06: Opening Day Volumes

Fig. 07: Opening Day + 20 Years Volumes

39
westbound left turn at the intersection of Highway 16 and Range Road 13 does warrant a left turn lane with a total of 25 metres of storage. Regardless of the development of the site, this improvement would be warranted by the year 2024 or 2025 based on assumed background growth. Nonetheless, the developer will be required to make contributions to intersection improvements, to be established through a Development Agreement.

No other mitigation measures are recommended to accommodate additional traffic generated by the site development.

4.3 Risk Assessment \& Emergency Response Plan

WATT Consulting Group was retained to provide a risk assessment and emergency response plan for the proposed development, in accordance with the County's Emergency Response Plan requirements. The County's requirements are outlined in Appendix B. The risk assessment indicates that there are no hazardous materials on site. Firefighting capability will be by tank storage on individual lots, in addition to a surface water storage pond of approximately $12,000 \mathrm{~m}^{3}$.

On-site water wells will provide an additional water source with a capacity of approximately 15 gallons per minute. A dry zz system is not being proposed at this time, however, if the County requires it this can be addressed at the engineering design stage.

The subject site will rely on services available in the County of Vermilion River. Ambulance and police services are available in the County. The County is a member of the East Central Health District. Fire protection will be the responsibility of the County.

Highway 16 will accommodate emergency access to and from the site. The access road located within the subject site is designed to accommodate emergency vehicles, in conformance with the County's General Municipal Servicing Standards. Emergency vehicles will be able to access the site from Spruce Hill Road. In the event of an emergency, private vehicles will also be able to evacuate the area using the internal access road onto Spruce Hill Road. A secondary access is provided by way of a registered easement on Title of proposed lot 3 . This is to accommodate emergency vehicles in the event that the primary access road cannot be used.

Appendix B illustrates the emergency response route between the subject site and the Hamlet of Blackfoot Fire Department. This route utilizes Highway 16 and takes approximately 7 minutes.

4.4 Landscape Plan

Landscape Plans will be submitted on a parcel-by-parcel basis at the development permit stage, to the satisfaction of the approving authority. Future development will conform to the requirements of the Land Use Bylaw and other municipal policies with respect to highway frontage.

Future Landscape Plans will address mitigative measures related to stormwater management. As indicated in Section 3.5, stormwater is directed to the central access road and then re-routed to a stormwater containment pond located within utility right-of-way Plan 032 1017. The stormwater retention pond directs overflow to the highway ditch by means of a surface swale. This is illustrated in Figure 9 - Drainage Plan.

4.5 Aesthetics

Parts of this development will be visible from Highway 16 and from Spruce Hill Road. Additionally, new overhead utility lines will be required to bring power and telephone service to the individual lots. No new exterior lighting is proposed at this time as this will be addressed at the development permit stage.

4.6 Signage

Signage will be addressed at the development permit stage and must meet the requirements of the Land Use Bylaw, to the satisfation of the approving authority.

4.7 Phasing

Proposed lot 6, located immediately adjacent to Spruce Hill Road will be the first to develop. The remaining lots will develop as and when an end user purchases the lots.

THE COUNTY OF VERMIWON RIVER No. 24
PLAN SHOWNG SURVEY OF
SUBDIVISION
affecting
LOT 2, BLOCK 2, PLAN 0321016
WTHIN THE
N.E. $1 / 4$ SEC. 33 , TWP. 49, RGE. 1, W.4th. M.

A $L \quad B \quad E \quad R \quad T \quad A$
2018
BY: JASON DESCHAMPS, A.LS
SCALE : $1: 1000$

LEGEND:
気
NOTES:

ABBREVATONS: (where applicoble)

N.E. $1 / 4$ SEC. 33, TWP. 49, RGE. 1, W.5th. M.

Appendices

HOLTBY DEVELOPMENT

Transportation Impact Assessment

PERMIT TO PRACTICE

 WATT CONSULTING GROUP LTD.signature midal ayderhon
Date November 18, 2019
PERMIT NUMBER: P 3818
The Association of Professional Engineers,
Geologists and Geophysicists of Alberta

November 18, 2019

Author: lan M. Wilson

500 Empire Building
10080 Jasper Avenue
Edmonton, AB T5J 1V9

T 780.800.2957

TABLE OF CONTENTS

1.0 INTRODUCTION 1
2.0 STUDY AREA 1
3.0 SITE DETAILS 3
4.0 TRAFFIC ANALYSIS 4
4.1 Analysis Assumptions 4
4.2 Existing Traffic 4
4.3 Background Traffic Growth 5
4.4 Trip Generation 5
4.5 Trip Distribution 7
4.6 Traffic Analysis 8
4.6.1 Opening Day 8
4.6.2 Opening Day +20 years 9
4.7 Warrant Calculations 9
5.0 RECOMMENDATIONS AND CONCLUSIONS 11
APPENDICES
Appendix A: Regulatory Plan MapsAppendix B: Traffic Anlaysis Results SummaryAppendix C: Traffic Analysis Synchro OutputsAppendix D: Warrant Calculations

LIST OF FIGURES

Figure 1: Site Location 1
Figure 2: Study Area Intersections 2
Figure 3: Proposed Site Plan 3
Figure 4: Existing (2017) Volumes 4
Figure 5: Data Collection Location and Captured Land Area 6
Figure 6: Opening Day Volumes 8
Figure 7: Opening Day + 20 Years Volumes 8
LIST OF TABLES
Table 1: Parcel size and assumed GFA 5
Table 2: Trip Generation for Proposed Development (ITE) 6
Table 3: Collected Trip Generation Rate 6
Table 4: Trip Generation for Proposed Development (Local Rate) 7
Table 5: Spruce Hill Road Volumes 7
Table 6: Trip Distribution 7
Table 7: Signal Warrant 9
Table 8: Left Turn Warrant 10

1.0 INTRODUCTION

WATT Consulting Group was retained by 1662580 Alberta Ltd. to conduct a Transportation Impact Assessment in conjunction with a site development plan submission. The site is located at Lot 2, Block 2, Plan 03210165 NE $1 / 4$ Sec 33, Twp 49, Rge 1, W4M within the County of Vermillion River. The site location is shown in Figure 1.

Figure 1: Site Location

In 2016, WATT completed a regional model for the County of Vermillion River. This model included a PM peak hour 2020 and a 2025 analysis horizon. The information contained in the model was used to support or verify assumptions. Details of the information used and its relevance is outlined in the appropriate sections.

2.0 STUDY AREA

The study area includes four existing intersections plus the proposed site access location. The study intersections are shown on Figure 2 and listed below:

- Highway 16 / Range Road 14 (NB/SB stop controlled)
- Highway 16 / Range Road 13 (NB/SB stop controlled)
- Spruce Hill Road / Range Road 14 (WB yield controlled)
- Spruce Hill Road / Range Road 13 (EB stop controlled)
- Spruce Hill Road / Site Access (SB stop controlled)

Figure 2: Study Area Intersections

All roadways within the study area are a rural cross section with no designated pedestrian or bicycle facilities. A summary of each roadway is provided below.

Highway 16 (Yellowhead Highway) is a paved, four-lane divided Provincial Highway and is part of the Trans-Canada Highway. The annual average daily traffic for this roadway is approximately 15,000 near the site. The posted speed within the study area is $80 \mathrm{~km} / \mathrm{hr}$, increasing to $110 \mathrm{~km} / \mathrm{hr}$ to the west and reducing to $60 \mathrm{~km} / \mathrm{hr}$ at the City of Lloydminster to the east.

Range Road 14 is a two-lane A2 class paved roadway. It provides access to businesses adjacent to Highway 16 and continues north and south through most of the County.

Range Road 13 is a two-lane D1 classified road and is paved between Highway 16 and Spruce Hill Road. This roadway continues for approximately a mile north and south of Highway 16.

Spruce Hill Road is a two-lane roadway connecting Range Road 14 and Range Road 13, providing access to businesses adjacent to Highway 16. The middle portion, including the roadway adjacent to the site, is gravel with cold mix pavement on both ends.

The intersection with Range Road 14 is based on a typical Major Road intersection ${ }^{1}$ with left and right turn lanes on Highway 16 in both directions. The intersection at Range Road 13 has tapers leading into the intersection, but no designated turn lanes on Highway 16, consistent with a Minor Road Intersection ${ }^{2}$.

3.0 SITE DETAILS

The site is located at Lot 2, Block 2, Plan 03210165 NE $1 / 4$ Sec 33, Twp 49, Rge 1, W4M within the County of Vermillion River. The location of the site is within the County of Vermillion River and City of Lloydminster's Intermunicipal Development Plan (IDP) Area, designated as "Urban Expansion (Central)". The site is regulated by both the Central Urban Expansion Area Structure Plan and the County of Vermillion River Land Use Bylaw. The site location in relation to these plans is shown in Appendix A. The zoning for this site under the County's Land Use Bylaw is Industrial - Medium (M). This district allows development of medium industrial and similar uses. The proposed use of the site is in line with this zoning. The site plan is shown in Figure 3, Lot 5 and Lot 6 have existing uses and were not included in the trip generation.

Figure 3: Proposed Site Plan

N.E. $1 / 4$ SEC. 33, TWP. 49, RGE. 1, W.5th. M.

[^0]
4.0 TRAFFIC ANALYSIS

Analysis was completed for the study area assessing the road network with and without the proposed development. This section outlines the steps that were taken to develop the background and site vehicle trips and the assumptions, results, and implications of the capacity analysis.

4.1 ANALYSIS ASSUMPTIONS

Three analysis scenarios were developed, an existing (2017) scenario, an Opening Day (2021) scenario and an Opening Day + 20 Years (2041) scenario. All scenarios included the AM and PM peak hour. Analysis was conducted using the Synchro 9^{3} software. Synchro / SimTraffic is a two-part traffic modelling software that provides analysis of traffic conditions. The Highway Capacity Manual (2010) methodology built into Synchro was used to analyze the study intersections. The westbound yield control on Spruce Hill Road at Range Road 14 was modelled as a stop control due to limitations with the HCM 2010 methodology.

4.2 EXISTING TRAFFIC

Turning movement data was obtained from the Alberta Transportation website for the intersections of Highway 16 / Range Road 14 and Highway 16 / Range Road 13. The latest data available was for 2017 and was based on a turning movement count from the same year.
The turning movements at the intersections of Spruce Hill Road with Range Road 14 and Range Road 13 were developed using the volume information from the Highway 16 intersections combined with turning movements within the model. The assumed 2017 volumes are shown in Figure 4.

Figure 4: Existing (2017) Volumes

[^1]
4.3 BACKGROUND TRAFFIC GROWTH

The Highway 16 through volumes were grown at a rate of $2 \%{ }^{4}$ for 4 years. This percentage is based on the historic growth at these intersections. The 2% growth rate was compared to the volumes shown in the 2020 and 2025 models and deemed to be appropriate. Growth on Range Road 14 and Range Road 13 is assumed to be primarily driven by new developments, and therefore was not adjusted by the 2% for the Opening Day scenario. For the Opening Day +20 years scenario, growth was applied to all intersection movements.

4.4 TRIP GENERATION

The vehicles trips to the site were estimated using the ITE Trip Generation Manual ($10^{\text {th }}$ Edition). The site has a number of acceptable land uses, all with unique trip generation rates. The best estimate within the manual is the General Light Industrial. From the description in the ITE Trip Generation Manual, General Light Industrial has an emphasis on activities other than manufacturing and typically has minimal office space and typically activities include printing, material testing, and assembly of data processing equipment. The average rate for the 'Peak Hour of Adjacent Street Traffic' was used for both the AM and PM peak hour. To convert from the site area to GFA, it was assumed that the building GFA would be 15% of the site area. A brief survey of nearby sites using aerial imagery was conducted and a GFA of 15% of the site area was considered appropriate for this area. The parcel sizes and corresponding assumed GFA is shown in Table 1 with trip Generation numbers (AM peak hour, PM peak hour, and daily) shown in Table 2.

TABLE 1: PARCEL SIZE AND ASSUMED GFA

Parcel Number	Land Area (acre)	Land Area $(1,000$ sq ft)	Assumed GFA $(1,000$ sq ft)
6^{*}	4.06	176.9	26.5
7	1.94	84.5	12.7
8	1.94	84.5	12.7
9	4.28	186.4	28.0
10	4.00	174.2	26.1
11	1.73	75.4	11.3
Total	17.95	$\mathbf{7 8 1 . 9}$	$\mathbf{1 1 7 . 3}$
Total for new trips	13.89	605.0	90.8

*- Parcel has an existing use and was not included in the trip generation.

[^2]TABLE 2: TRIP GENERATION FOR PROPOSED DEVELOPMENT (ITE)

Peak Hour	ITE	Land Use	GFA	Trip Rate	Total	Trips	Trips
AM	110	General Light Industrial	$\left(1,000 \mathrm{ft}^{2}\right)$	90.8	0.70	63.5	56
$\left(\right.$ per $\left.1,000 \mathrm{ft}^{2}\right)$	Trips	In	Out				
PM	110	General Light Industrial	90.8	0.63	57.2	7	50
Daily	110	General Light Industrial	90.8	4.69	425.7	213	213

Based on the surrounding land use and existing volumes within the area, it was determined that the ITE trip rate may be too high for the local context. A 11-hour count was conducted on Production Avenue to measure the trip rate for a similar industrial use nearby. Figure 5 shows the count location and included area and Table 3 provides the calculated trip rates.

Figure 5: Data Collection Location and Captured Land Area

TABLE 3: COLLECTED TRIP GENERATION RATE

Peak Hour	Land Use	Gross Area (acres)	Total Trips	Trips In	Trips Out	Trip Rate (per acre)
AM	Production Ave Cul-de-sac	67.7	73	57	16	1.08
PM	Production Ave Cul-de-sac	67.7	65	14	51	0.96
7am -6pm	Production Ave Cul-de-sac	67.7	581	292	289	8.58

The collected trip rate was applied to the proposed development with the resulting volumes shown in Table 4.

TABLE 4: TRIP GENERATION FOR PROPOSED DEVELOPMENT (LOCAL RATE)

Peak Hour	Code	Land Use	GFA	Trip Rate	Total	Trips	Trips
(1,000 $\left.\mathrm{ft}^{2}\right)$	$\left(\right.$ per $\left.1,000 \mathrm{ft}^{2}\right)$	Trips	In	Out			
AM	110	General Light Industrial	15.21	1.08	16.4	13	4
PM	110	General Light Industrial	112.6	0.96	14.6	3	11
Daily	110	General Light Industrial	112.6	8.58	130.5	65	65

The proposed volumes on Spruce Hill Road just east of the site along with the county's model scenarios are provided in Table 5.

TABLE 5: SPRUCE HILL ROAD VOLUMES

PM Peak Hour	Existing Volumes	New Site Trips	Opening Day Volumes	2020 Model Volumes	2025 Model Volumes
Westbound	13	3	16	60	59
Eastbound	29	11	40	96	113

4.5 TRIP DISTRIBUTION

An analysis of the model volumes was conducted to determine trip distribution for the zone containing the site. The inbound and outbound volumes from the study site's zone were totaled and percentages were determined for the PM peak hour distribution. The inbound and outbound distribution was swapped to generate the AM peak hour distribution. The assumed trip distribution is shown in Table 6.

TABLE 6: TRIP DISTRIBUTION.

Roadway link	AM Peak		Hour	PM Peak Hour	
	Inbound	Outbound	Inbound	Outbound	
Highway 16 west	75%	80%	75%	65%	
Highway 16 east	15%	20%	25%	20%	
RR 14 north	8%	0%	0%	8%	
RR 14 south	7%	0%	0%	7%	
RR 13 north	0%	0%	0%	0%	
RR 13 south	0%	0%	0%	0%	

Based on the assumptions provided above, the Opening Day (2021) and Opening Day + 20 Years (2041) volumes are shown in Figure 6 and Figure 7.

Figure 6: Opening Day Volumes

Figure 7: Opening Day + 20 Years Volumes

4.6 TRAFFIC ANALYSIS

4.6.1 OPENING DAY

Analysis for the AM and PM peak hours was conducted and all movements were shown to operate with acceptable delay and capacity. The results show no capacity concerns with all movements below a 0.30 volume to capacity ratio and LOS C or better. The Opening Day scenario shows only minor delay increases in the order of 1 to 2 seconds or less over the Existing scenario. A summary of the analysis findings is provided in Appendix \mathbf{B} with detailed Synchro outputs provided in Appendix C. Based on the analysis findings, the existing road network is able to accommodate the additional trips from the proposed site.

4.6.2 OPENING DAY + 20 YEARS

For the Opening Day + 20 Years scenario, the intersection along Spruce Hill Drive continue to operate with acceptable levels of service. The left turns from Range Road 13 and 14 onto Highway 16 show higher delay and LOS. Analysis was completed using 2041 Background volumes, and all southbound left turns are LOS E along with the northbound left turn on Range Road 14 during the PM Peak Hour. For the Opening Day + 20 scenario (with site trips), delay increases in the order of 1-2 seconds were reported on the left turns. There are no capacity or queuing concerns with this movement.

4.7 WARRANT CALCULATIONS

Warrant calculations were conducted for both intersection with Highway 16 including the Alberta Transportation Canadian Matrix Signal Warrant Analysis and the Alberta Transportation left and right turn lane warrants. Both intersections are already illuminated and an illumination warrant was not required.

For the signal warrants, the raw count data from 2017 was used to obtain the six peak hours. These numbers were manually increased to better reflect the published $100^{\text {th }}$ Highest Hour estimates. The site trips were then added to the volumes with four of the six peak hours estimated based on the AM and PM peak hour volumes. The results of the warrants are shown in Table 7 with the warrant results in Appendix \mathbf{D}.

TABLE 7: SIGNAL WARRANT

Intersection	Scenario	Warrant Score*	Result
Highway 16 / RR 14	Opening Day	68	Not Warranted
Highway 16 / RR 13	Opening Day	31	Not Warranted
Highway 16 / RR 14	OD + 20 year BG	147	Warranted
Highway 16 / RR 13	OD + 20 year BG	57	Not Warranted
Highway 16 / RR 14	OD + 20 year	149	Warranted
Highway 16 / RR 13	OD + 20 year	64	Not Warranted

In the Opening Day + 20 Year Background scenario, a signal is warranted at the intersection of Highway 16 / Range Road 14. The site trips added to this slightly increase the warrant score, but the warrant is triggered by the background growth.

Left and right turn lane warrants were completed using Sections D.8.6 and D.8.7, respectively, in the Alberta Transportation Highway Geometric Design Guide. The intersection of Highway 16 / Range Road 14 already contains left and right turn lanes and therefore warrant calculations were not completed for the intersection. The right turn volumes at the intersection of Highway 16 / Range Road 13 do not exceed 360 daily movements and therefore a right turn is not warranted. The results of the left turn warrant are provided in Table 8 with the results on Figure D-8.6c are provided in Appendix D.

TABLE 8: LEFT TURN WARRANT

Intersection	Scenario	Time Period	Direction	Warrant
Highway 16 / RR 13	Opening Day BG	AM Peak	Eastbound	No Left Turn
Highway 16 / RR 13	Opening Day BG	PM Peak	Eastbound	No Left Turn
Highway 16 / RR 13	Opening Day	AM Peak	Eastbound	No Left Turn
Highway 16 / RR 13	Opening Day	PM Peak	Eastbound	No Left Turn
Highway 16 / RR 13	Opening Day BG	AM Peak	Westbound	No Left Turn
Highway 16 / RR 13	Opening Day BG	PM Peak	Westbound	No Left Turn
Highway 16 / RR 13	Opening Day	AM Peak	Westbound	Left Turn S=15m
Highway 16 / RR 13	Opening Day	PM Peak	Westbound	No Left Turn
Highway 16 / RR 13	OD + 20 year BG	AM Peak	Eastbound	No Left Turn
Highway 16 / RR 13	OD + 20 year BG	PM Peak	Eastbound	No Left Turn
Highway 16 / RR 13	OD + 20 year	AM Peak	Eastbound	No Left Turn
Highway 16 / RR 13	OD + 20 year	PM Peak	Eastbound	No Left Turn
Highway 16 / RR 13	OD + 20 year BG	AM Peak	Westbound	Left Turn S=15m
Highway 16 / RR 13	OD + 20 year BG	PM Peak	Westbound	No Left Turn
Highway 16 / RR 13	OD + 20 year	AM Peak	Westbound	Left Turn S=15m
Highway 16 / RR 13	OD + 20 year	PM Peak	Westbound	No Left Turn

For the Opening Day horizon, a left turn lane in the westbound direction at Range Road 13 is warranted with a base length of 15 m . The increase of 8 site trips is enough result in a warranted left turn lane. Looking at the Opening Day plus 20 Background, a 15 m left turn bay is also warranted with the AM peak hour volume. Based on background growth alone, the left turn lane would be warranted around 2024 or 2025 . The addition of the site trips accelerates the warranting of a left turn lane, but is not the primary driver of the improvement. The 10% truck volume on Highway 16 increases the storage requirement by 10 m based on Table D.7.6a in the Manual. This results in a left turn lane with 25 m of storage.

5.0 RECOMMENDATIONS AND CONCLUSIONS

The proposed use of the site is in line with the land use bylaw and the adjacent developments. The transportation network around the site is able to accommodate the existing volumes with no capacity or delay concerns.

The site is estimated to generate roughly 150 trips per day with less than 20 trips in the peak hours. The increase in volume from this site and background growth along Highway 16 did not significantly impact the operation of the study intersections in the short term. The addition of the site trips to the westbound left turn at the intersection of Highway 16 / Range Road 13 does warrant a left turn lane with a total of 25 m of storage. Regardless of the development of the site, this improvement would be warranted in approximately 2024 or 2025 based on assumed background growth. Background growth over the next 2 years may warrant signalization or additional improvements to the Highway 16 intersections, but these are not the direct result of the site. No other mitigation measures are recommended to accommodate the additional traffic generated by the site development.

APPENDIX A: REGULATORY PLAN MAPS

Intermunicipal Development Plan

Vermilion River Land Use Bylaw

APPENDIX B: TRAFFIC ANLAYSIS RESULTS SUMMARY

AM Peak Hour (Long Term)

Intersection (EW Street / NS Street)	Movement	Opening Day + 20 BG			Opening Day + 20		
		v/c	LOS	Delay (s)	v/c	LOS	Delay (s)
Highway 16 / RR 13	NBLTR	0.06	B	12.6	0.07	B	12.6
	EBL	0.00	B	12.6	0.00	B	12.6
	EBT	-	A	0.0	-	A	0.0
	WBL	0.07	B	10.7	0.08	B	10.8
	WBT	-	A	1.7	-	A	2
	SBLTR	0.23	E	43.6	0.23	E	44.8
Highway 16 / RR 14	NBLTR	0.44	E	46.7	0.45	E	47.2
	EBL	0.08	B	11.2	0.08	B	11.2
	WBL	0.19	B	11.8	0.19	B	11.9
	SBLTR	0.53	E	40.2	0.54	E	41.2
Spruce Hill Rd / RR 13	NBL	0.00	A	7.3	0.00	A	7.3
	NBT	-	A	0	-	A	0
	EBLR	0.03	A	8.7	0.04	A	8.9
Spruce Hill Rd / RR 14	WBLR	0.05	A	8.7	0.07	A	9.0
	SBL	0.07	A	7.4	0.12	A	7.5
	SBT	-	A	0	-	A	0
Spruce Hill Rd / Site Access	EBL	-	A	0	0.00	A	0
	EBT	-	A	0	-	A	0
	SBL	-	A	0	0.01	A	0

PM Peak Hour (Short Term)

Intersection (EW Street / NS Street)	Movement	Existing			Opening Day		
		v/c	LOS	Delay (s)	v/c	LOS	Delay (s)
Highway 16 / RR 13	NBLTR	0.06	B	11.6	0.07	B	12.0
	EBL	0.00	A	9.6	0.00	A	9.8
	EBT	-	A	0	-	A	0.0
	WBL	0.02	A	9.5	0.02	A	9.7
	WBT	-	A	0.1	-	A	0.2
	SBLTR	0.14	C	19.8	0.15	C	21.6
Highway 16 / RR 14	NBLTR	0.20	B	14.4	0.22	C	15.5
	EBL	0.03	A	9.6	0.03	A	9.9
	WBL	0.01	A	8.8	0.01	A	9.0
	SBLTR	0.22	C	18.4	0.23	C	19.8
Spruce Hill Rd / RR 13	NBL	0.00	A	7.3	0.00	A	7.3
	NBT	-	A	0	-	A	0.0
	EBLR	0.04	A	8.7	0.05	A	8.8
Spruce Hill Rd I RR 14	WBLR	0.09	A	8.7	0.09	A	8.7
	SBL	0.02	A	7.3	0.02	A	7.3
	SBT	-	A	0	-	A	0.0
Spruce Hill Rd / Site Access	EBL	-	A	0	0.00	A	7.3
	EBT	-	-	-	-	A	0.0
	SBL	-	A	0	0.01	A	8.7

PM Peak Hour (Long Term)

Intersection (EW Street / NS Street)	Movement	Opening Day + 20 BG			Opening Day + 20		
		v/c	LOS	Delay (s)	v/c	Los	Delay (s)
Highway 16 / RR 13	NBLTR	0.11	B	14.3	0.13	B	14.4
	EBL	0.01	B	11.5	0.01	B	11.5
	EBT	-	A	0.1	-	A	0.1
	WBL	0.04	B	11.3	0.04	B	11.3
	WBT	-	A	0.6	-	A	0.7
	SBLTR	0.36	E	40.6	0.36	E	41.0
Highway 16 / RR 14	NBLTR	0.44	D	25.1	0.46	D	26.0
	EBL	0.06	B	11.7	0.06	B	11.7
	WBL	0.03	B	10	0.03	B	10.0
	SBLTR	0.54	E	41.9	0.54	E	41.9
Spruce Hill Rd I RR 13	NBL	0.00	A	7.3	0.01	A	7.3
	NBT	-	A	0	-	A	0.0
	EBLR	0.04	A	8.7	0.06	A	8.9
Spruce Hill Rd I RR 14	WBLR	0.09	A	8.7	0.14	A	9.0
	SBL	0.02	A	7.3	0.03	A	7.3
	SBT	-	A	0	-	A	0.0
Spruce Hill Rd / Site Access	EBL	-	A	0	0.00	A	7.3
	EBT	-	-	-	-	A	0.0
	SBL	-	A	0	0.01	A	8.8

APPENDIX C: TRAFFIC ANALYSIS SYNCHRO OUTPUTS

Intersection													
Int Delay, s/veh	0.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		$\uparrow \hat{+}$			$\stackrel{\text { A }}{ }$			¢			\$		
Traffic Vol, veh/h	1	633	3	30	856	26	0	0	20	16	0	1	
Future Vol, veh/h	1	633	3	30	856	26	0	0	20	16	0	1	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-		None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	2	-	-	2	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	1	688	3	33	930	28	0	0	22	17	0	1	

| Intersection | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

Intersection						

Intersection						

Intersection						
Int Delay, s/veh	5.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1			\uparrow	F	
Traffic Vol, veh/h	29	5	5	2	2	13
Future Vol, veh/h	29	5	5	2	2	13
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	32	5	5	2	2	14

Intersection						
Int Delay, s/veh	7.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		\uparrow			\uparrow
Traffic Vol, veh/h	5	82	4	5	31	4
Future Vol, veh/h	5	82	4	5	31	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	5	89	4	5	34	4

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	20	0	-	0	57	20
Stage 1	-	-	-	-	20	-
Stage 2	-	-	-	-	37	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1596	-	-	-	950	1058
Stage 1	-	-	-	-	1003	-
Stage 2	-	-	-	-	985	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1596	-	-	-	950	1058
Mov Cap-2 Maneuver	-	-	-	-	950	-
Stage 1	-	-	-	-	1003	-
Stage 2	-	-	-	-	985	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1596	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		0	-	-	-	0
HCM Lane LOS		A	-	-	-	A
HCM 95th \%tile Q(veh		0	-	-	-	-

Intersection						
Int Delay, s/veh	3.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	S	
Traffic Vol, veh/h	22	5	5	1	3	38
Future Vol, veh/h	22	5	5	1	3	38
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	24	5	5	1	3	41

Intersection						
Int Delay, s/veh	6.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mi		\uparrow			\uparrow
Traffic Vol, veh/h	5	40	2	6	113	12
Future Vol, veh/h	5	40	2	6	113	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	5	43	2	7	123	13

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	265	6	0	0	9	0
Stage 1	6	-	-	-	-	-
Stage 2	259	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	724	1077	-	-	1611	-
Stage 1	1017	-	-	-	-	-
Stage 2	784	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	668	1077	-	-	1611	-
Mov Cap-2 Maneuver	668	-	-	-	-	-
Stage 1	1017	-	-	-	-	-
Stage 2	724	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.8		0		6.7	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	1008	1611	-
HCM Lane V/C Ratio		-	-	0.049	0.076	-
HCM Control Delay (s)		-	-	8.8	7.4	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.2	-

Intersection							
Int Delay, s/veh	1						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations $\begin{aligned} & \text { ¢ }\end{aligned}$							
Traffic Vol, veh/h	5	24	35	8		1	
Future Vol, veh/h	5	24	35	8	3	1	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control Free Free Free Free Stop Stop							
RT Channelized - None - None - None							
	-	-	-	-	0	-	
Veh in Median Storage, \#		0	0	-	0	-	
Grade, \%		0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	5	26	38	9	3	1	

Major/Minor \quad N	Major1		Major2		Minor2	
Conflicting Flow All	47	0	-	0	79	43
Stage 1	-	-	-	-	43	-
Stage 2	-	-	-	-	36	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1560	-	-	-	924	1027
Stage 1	-	-	-	-	979	-
Stage 2	-	-	-	-	986	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1560	-	-	-	921	1027
Mov Cap-2 Maneuver	-	-	-	-	921	-
Stage 1	-	-	-	-	976	-
Stage 2	-	-	-	-	986	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.3		0		8.8	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		1560	-	-	-	945
HCM Lane V/C Ratio		0.003	-	-	-	0.005
HCM Control Delay (s)		7.3	0	-	-	8.8
HCM Lane LOS		A	A	-	-	A
HCM 95th \%tile Q(veh)		0	-	-	-	0

Intersection													
Int Delay, s/veh	0.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		* \uparrow			$\uparrow \uparrow$			¢			*		
Traffic Vol, veh/h	2	787	2	15	806	29	1	0	37	34	0	1	
Future Vol, veh/h	2	787	2	15	806	29	1	0	37	34	0	1	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	2	-	-	2	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	2	855	2	16	876	32	1	0	40	37	0	1	

Intersection						
Int Delay, s/veh	6.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			-1	l	
Traffic Vol, veh/h	36	5	5	2	2	15
Future Vol, veh/h	36	5	5	2	2	15
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	39	5	5	2	2	16

Intersection						
Int Delay, s/veh	7.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1			\uparrow
Traffic Vol, veh/h	6	85	4	5	32	4
Future Vol, veh/h	6	85	4	5	32	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	7	92	4	5	35	4

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	81	7	0	0	9	0
Stage 1	7	-	-	-	-	-
Stage 2	74	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	921	1075	-	-	1611	-
Stage 1	1016	-	-	-	-	-
Stage 2	949	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	901	1075	-	-	1611	-
Mov Cap-2 Maneuver	901	-	-	-	-	-
Stage 1	1016	-	-	-	-	-
Stage 2	928	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.7		0		6.5	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	- 1061		1611	-
HCM Lane V/C Ratio		-	- 0.093		0.022	-
HCM Control Delay (s)		-		8.7	7.3	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.3	0.1	-

Intersection						
Int Delay, s/veh	3.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mi			\mathbf{A}	F	
Traffic Vol, veh/h	19	5	5	1	3	30
Future Vol, veh/h	19	5	5	1	3	30
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	21	5	5	1	3	33

Intersection						
Int Delay, s/veh	6.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	5	39	2	5	109	12
Future Vol, veh/h	5	39	2	5	109	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	5	42	2	5	118	13

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	254	5	0	0	7	0
Stage 1	5	-	-	-	-	-
Stage 2	249	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	735	1078	-	-	1614	-
Stage 1	1018	-	-	-	-	-
Stage 2	792	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	681	1078	-	-	1614	-
Mov Cap-2 Maneuver	681	-	-	-	-	-
Stage 1	1018	-	-	-	-	-
Stage 2	733	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.7		0		6.7	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	1011	1614	-
HCM Lane V/C Ratio		-	-	0.047	0.073	-
HCM Control Delay (s)		-	-	8.7	7.4	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.1	0.2	-

Intersection						

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	38	0	-	0	64	38
Stage 1	-	-	-		38	-
Stage 2	-	-	-	-	26	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-		3.518	3.318
Pot Cap-1 Maneuver	1572	-	-	-	942	1034
Stage 1	-	-	-		984	-
Stage 2	-	-	-		997	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1572	-	-	-	942	1034
Mov Cap-2 Maneuver	-	-	-	-	942	-
Stage 1	-	-	-		984	-
Stage 2	-	-	-	-	997	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1572	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		0	-	-	-	0
HCM Lane LOS		A	-	-	-	A
HCM 95th \%tile Q(veh		0	-	-	-	-

Intersection						
Int Delay, s/veh	7.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MF		1			\uparrow
Traffic Vol, veh/h	5	82	4	5	31	4
Future Vol, veh/h	5	82	4	5	31	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	5	89	4	5	34	4

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	79	7	0	0	9	0
Stage 1	7	-	-	-	-	-
Stage 2	72	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	924	1075	-	-	1611	-
Stage 1	1016	-	-	-	-	-
Stage 2	951	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	905	1075	-	-	1611	-
Mov Cap-2 Maneuver	905	-	-	-	-	-
Stage 1	1016	-	-	-	-	-
Stage 2	931	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.7		0		6.4	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	1064	1611	-
HCM Lane V/C Ratio		-	-	0.089	0.021	-
HCM Control Delay (s)		-	-	8.7	7.3	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.3	0.1	-

Intersection							
Int Delay, s/veh	0						
Movement E	EBL	EBT	WBT	WBR	SBL		
Lane Configurations		${ }_{4} 1$	\uparrow		*		
Traffic Vol, veh/h	0	34	18	0	0	0	
Future Vol, veh/h	0	34	18	0	0	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control Fr	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	0	37	20	0	0	0	

Major/Minor	Major1				Minor2	
Conflicting Flow All	20	0	-	0	57	20
Stage 1	-	-	-	-	20	-
Stage 2	-	-	-	-	37	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1596	-	-	-	950	1058
Stage 1	-	-	-	-	1003	-
Stage 2	-	-	-	-	985	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1596	-	-	-	950	1058
Mov Cap-2 Maneuver	-	-	-	-	950	-
Stage 1	-	-	-	-	1003	-
Stage 2	-	-	-	-	985	-
Approach	EB		B		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL EBT WBT WBR SBLn1				
Capacity (veh/h)		1596	-	- -	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		0	-	-	-	0
HCM Lane LOS		A	-	-	-	A
HCM 95th \%tile Q(veh)		0	-	-	-	-

Major/Minor \quad N	Major1	Major2				Minor1			Minor2				
Conflicting Flow All	1418	0	0	1022	0	0	1825	2554	511	2023	2536	709	
Stage 1	-	-	-	-	-	-	1022	1022	-	1512	1512	-	
Stage 2	-	-	-	-	-	-	803	1532	-	511	1024	-	
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	476	-	-	675	-	-	48	26	508	34	27	377	
Stage 1	-	-	-	-	-	-	253	312	-	126	181	-	
Stage 2	-	-	-	-	-	-	343	177	-	514	311	-	
Platoon blocked, \%		-	-		-	-							
Mov Cap-1 Maneuver	476	-	-	675	-	-	33	15	508	~ 21	16	377	
Mov Cap-2 Maneuver	-	-	-	-	-	-	151	93	-	114	93	-	
Stage 1	-	-	-	-	-	-	252	310	-	125	107	-	
Stage 2	-	-	-	-	-	-	203	105	-	475	309	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			2.3			12.6			44.8			
HCM LOS							B			E			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		508	476	-	-	675	-	-	117				
HCM Lane V/C Ratio		0.071	0.002	-	-	0.084	-	-	0.232				
HCM Control Delay (s)		12.6	12.6	0	-	10.8	2	-	44.8				
HCM Lane LOS		B	B	A	-	B	A	-	E				
HCM 95th \%tile Q(veh)		0.2	0	-	-	0.3	-	-	0.8				
Notes													
\sim Volume exceeds cap	pacity	\$: De	lay exc	ceeds 3		+: Com	mputation	Not D	efined	*: All	major v	volume in	in platoon

Major/Minor	Major1		Major2			Minor1			Minor2	
Conflicting Flow All	1106	0	0	1075	0	0	1832	2480	516	1774
Stage 1	-	-	-		-	-	1132	1132		1143
Stage 2	-	-	-		-	-	700	1348		631
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54
Critical Hdwy Stg 2	-	-	-		-	-	6.54	5.54		6.54
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52
Pot Cap-1 Maneuver	627	-		644	-	-	47	~ 29	504	52
Stage 1	-	-	-	-	-	-	216	276		213
Stage 2	-	-	-		-	-	396	218	-	436
Platoon blocked, \%		-	-		-	-				
Mov Cap-1 Maneuver	627	-		644	-	-	30	~ 22	504	~ 32
Mov Cap-2 Maneuver	-	-	-	-	-	-	142	108		141
Stage 1	-	-			-		199	254		196
Stage 2	-	-	-	-	-	-	270	177	-	341
Approach	EB			WB			NB			SB
HCM Control Delay, s	0.5			1.2			47.2			41.2
HCM LOS							E			E

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1
Capacity (veh/h)	149	627	-	-644	-	-206	
HCM Lane V/C Ratio	0.445	0.08	-	-0.187	-	-0.538	
HCM Control Delay (s)	47.2	11.2	-	-11.9	-	-41.2	
HCM Lane LOS	E	B	-	-	B	-	-
HCM 95th \%tile Q(veh)	2	0.3	-	-	0.7	-	-

Notes

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						
Int Delay, s/veh	3.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			$\mathbf{4}$	F	
Traffic Vol, veh/h	31	7	7	1	4	52
Future Vol, veh/h	31	7	7	1	4	52
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	34	8	8	1	4	57

Intersection						
Int Delay, s/veh	7.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mi		\uparrow			\uparrow
Traffic Vol, veh/h	7	59	3	8	165	18
Future Vol, veh/h	7	59	3	8	165	18
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	8	64	3	9	179	20

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	386	8	0	0	12	0
Stage 1	8	-	-	-	-	-
Stage 2	378	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	617	1074	-	-	1607	-
Stage 1	1015		-	-	-	-
Stage 2	693	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	547	1074	-	-	1607	-
Mov Cap-2 Maneuver	547	-	-	-	-	-
Stage 1	1015	-	-	-	-	-
Stage 2	615	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		6.8	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	974	1607	-
HCM Lane V/C Ratio		-	-	0.074	0.112	-
HCM Control Delay (s)		-	-	9	7.5	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0.4	-

Intersection						

Major/Minor	Major1		Major2		Minor1				Minor2	
Conflicting Flow All	1247	0	0	1176	0	0	1827	2474	588	1863
Stage 1		-	-		-	-	1181	1181		1270
Stage 2	-	-	-		-	-	646	1293		593
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54		6.54
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52
Pot Cap-1 Maneuver	554	-	-	590	-	-	48	29	452	~ 45
Stage 1	-	-	-	-	-	-	202	262	-	178
Stage 2	-	-	-	-	-	-	427	231		459
Platoon blocked, \%		-	-		-	-				
Mov Cap-1 Maneuver	554	-	-	590	-	-	43	25	452	~35
Mov Cap-2 Maneuver	-	-	-	-	-	-	169	148		152
Stage 1	-	-	-	-	-	-	199	258		175
Stage 2	-	-	-	-	-	-	371	201	-	396
Approach	EB			WB			NB			SB
HCM Control Delay, s	0.1			0.9			14.4			41
HCM LOS							B			E

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1	
Capacity (veh/h)	438	554	-	-590	-	-	154	
HCM Lane V/C Ratio	0.129	0.006	-	-0.039	-	-	0.36	
HCM Control Delay (s)	14.4	11.5	0.1	-11.3	0.7	-	41	
HCM Lane LOS	B	B	A	-	B	A	-	E
HCM 95th \%otile Q(veh)	0.4	0	-	-	0.1	-	-	1.5

Notes

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

Major/Minor	Major1	Major2				Minor1			Minor2				
Conflicting Flow All	1213	0	0	927	0	0	1595	2224	453	1719	2185	576	
Stage 1	-	-	-	-	-	-	971	971	-	1192	1192	-	
Stage 2	-	-	-	-	-	-	624	1253	-	527	993	-	
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	571	-	-	733	-	-	72	43	554	~58	45	460	
Stage 1	-	-	-	-	-	-	271	329	-	199	259	-	
Stage 2	-	-	-	-	-	-	440	242	-	502	322	-	
Platoon blocked, \%		-	-		-	-							
Mov Cap-1 Maneuver	571	-	-	733	-	-	58	39	554	~ 42	41	460	
Mov Cap-2 Maneuver	-	-	-	-	-	-	200	163	-	160	181	-	
Stage 1	-	-	-	-	-	-	255	310	-	187	252	-	
Stage 2	-	-	-	-	-	-	372	235	-	378	303	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.4			0.2			26			41.9			
HCM LOS							D			E			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		310	571	-	-	733	-	-	203				
HCM Lane V/C Ratio		0.456	0.057	-	-	0.027	-	-	0.541				
HCM Control Delay (s)		26	11.7	-	-	10	-	-	41.9				
HCM Lane LOS		D	B	-	-	B	-	-	E				
HCM 95th \%tile Q(veh)		2.3	0.2	-	-	0.1	-	-	2.8				
Notes													
\sim Volume exceeds cap	pacity	\$: De	lay exc	ceeds 3	Os	+: Com	mputation	Not D	efined	*: All	major v	volume	in platoon

Intersection						
Int Delay, s/veh	6.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			-1	F	
Traffic Vol, veh/h	50	7	7	3	3	21
Future Vol, veh/h	50	7	7	3	3	21
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	54	8	8	3	3	23

Intersection						
Int Delay, s/veh	7.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1			-1
Traffic Vol, veh/h	8	124	6	7	47	6
Future Vol, veh/h	8	124	6	7	47	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	9	135	7	8	51	7

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	120	11	0	0	15	0
Stage 1	11	-	-	-	-	-
Stage 2	109	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	876	1070	-	-	1603	-
Stage 1	1012	-	-	-	-	-
Stage 2	916	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	848	1070	-	-	1603	-
Mov Cap-2 Maneuver	848	-	-	-	-	-
Stage 1	1012	-	-	-	-	-
Stage 2	887	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		6.5	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	1053	1603	-
HCM Lane V/C Ratio		-	-	0.136	0.032	-
HCM Control Delay (s)		-	-	9	7.3	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.5	0.1	-

Intersection						

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	31	0	-	0	86	30
Stage 1	-	-	-		30	-
Stage 2	-	-	-	-	56	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-		3.518	3.318
Pot Cap-1 Maneuver	1582	-	-	-	915	1044
Stage 1	-	-	-		993	-
Stage 2	-	-	-	-	967	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1582	-	-	-	914	1044
Mov Cap-2 Maneuver	-	-	-	-	914	-
Stage 1	-	-	-		992	-
Stage 2	-	-	-	-	967	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		8.8	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		1582	-	-	-	957
HCM Lane V/C Ratio		0.001	-	-	-	0.012
HCM Control Delay (s)		7.3	0	-	-	8.8
HCM Lane LOS		A	A	-	-	A
HCM 95th \%tile Q(veh		0	-	-	-	0

APPENDIX D: WARRANT CALCULATIONS

Alberta Transportation Canadian Matrix Traffic Signal Warrant Analysis

Average 6-hour
 Peak Turning Movements

Alberta Transportation Canadian Matrix Traffic Signal Warrant Analysis

Average 6-hour
 Peak Turning Movements

Road Authority:	Alberta Transportation
	Lloydminster
Analysis Date:	2019 May 30, Thu
Count Date:	2017 Jun 20, Tue
Date Entry Format:	(yyyy-mm-dd)

Alberta Transportation Canadian Matrix Traffic Signal Warrant Analysis

Lane Configuration		匕 ¢ x	F ® E	宕			$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \stackrel{\rightharpoonup}{v} \\ & \hline \end{aligned}$		
Highway 16	WB	1		2			1	1000	2
Highway 16	EB	1		2			1	1000	2
Range Road 14	NB				1				
Range Road 14	SB				1				
Are the Range Road 14 NB right turns significantly impeded by through movements? (y/n) Are the Range Road 14 SB right turns significantly impeded by through movements? (y/n)							y		
							y		

Other input	Speed $(\mathrm{Km} / \mathrm{h})$	Truck $\%$	Bus Rt $(\mathrm{y} / \mathrm{n})$	Median (m)	
Highway 16	EW	80	10.0%	n	15.0
Range Road 14	NS		10.0%	n	

Range Road 14	NS		10.0\%	n												
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	W Side	E Side	N Side	S Side									
	18	21	16	30	7	44	77	807	161	34	961	41				
	24	19	19	43	18	43	30	653	74	31	850	13				
press 'Set Peak Hours' Button to set the peak hour	28	1	81	59	4	21	53	743	96	30	811	25				
periods	24	7	7	44	3	24	49	750	75	24	744	21				
	28	21	71	81	19	46	36	913	59	40	805	27				
	30	16	16	101	27	68	19	1051	64	27	814	16				
Total (6-hour peak)	152	85	210	358	78	246	264	4917	529	186	4985	143	0	0	0	0
Average (6-hour peak)	25	14	35	60	13	41	44	820	88	31	831	24	0	0	0	0

Alberta Transportation Canadian Matrix Traffic Signal Warrant Analysis

Lane Configuration			F \% E	宕		$\begin{aligned} & \text { た } \\ & \text { ※ } \\ & \text { E } \\ & \hline \end{aligned}$	$$		
Highway 16	WB		1			1		1000	2
Highway 16	EB		1			1		1000	2
Range Road 13	NB				1				
Range Road 13	SB				1				
Are the Range Road 13 NB right turns significantly impeded by through movements? (y/n) Are the Range Road 13 SB right turns significantly impeded by through movements? (y / n)							y		
							y		

Other input	Speed $(\mathrm{Km} / \mathrm{h})$	Truck $\%$	Bus Rt $(\mathrm{y} / \mathrm{n})$	Median (m)	
Highway 16	EW	80	10.0%	n	15.0
Range Road 13	NS		10.0%	n	

Range Road 13	NS		10.0\%	n												
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	W Side	E Side	N Side	S Side									
	0	0	22	13	0	1	28	1251	24	1	941	3				
	0	0	25	12	0	4	33	903	18	0	820	1				
press 'Set Peak Hours'	3	0	24	6	1	1	24	838	9	0	992	3				
periods	3	0	25	18	0	1	28	844	15	0	835	0				
	3	1	36	34	1	6	28	1035	31	3	1054	1				
	0	0	31	34	0	0	18	1073	31	3	1017	3				
Total (6-hour peak)	9	1	163	117	2	13	159	5944	128	7	5659	11	0	0	0	0
Average (6-hour peak)	2	0	27	20	0	2	27	991	21	1	943	2	0	0	0	0

Alberta Transportation Canadian Matrix Traffic Signal Warrant Analysis

Lane Configuration		匕 ¢ x	F ® E	宕			$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \stackrel{\rightharpoonup}{v} \\ & \hline \end{aligned}$		
Highway 16	WB	1		2			1	1000	2
Highway 16	EB	1		2			1	1000	2
Range Road 14	NB				1				
Range Road 14	SB				1				
Are the Range Road 14 NB right turns significantly impeded by through movements? (y/n) Are the Range Road 14 SB right turns significantly impeded by through movements? (y/n)							y		
							y		

Other input	Speed $(\mathrm{Km} / \mathrm{h})$	Truck $\%$	Bus Rt $(\mathrm{y} / \mathrm{n})$	Median (m)	
Highway 16	EW	80	10.0%	n	15.0
Range Road 14	NS		10.0%	n	

Range Road 14	NS		10.0\%	n												
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	W Side	E Side	N Side	S Side									
	19	21	16	30	8	44	77	807	161	34	961	44				
	25	19	19	43	19	43	30	653	74	31	850	15				
press 'Set Peak Hours' Button to set the peak hour	30	1	81	59	4	21	53	743	96	30	811	27				
periods	26	7	7	44	3	24	49	750	75	24	744	23				
	30	22	71	81	19	46	36	913	59	40	805	28				
	32	17	16	101	27	68	19	1051	64	27	814	17				
Total (6-hour peak)	162	87	210	358	80	246	264	4917	529	186	4985	154	0	0	0	0
Average (6-hour peak)	27	15	35	60	13	41	44	820	88	31	831	26	0	0	0	0

Alberta Transportation Canadian Matrix Traffic Signal Warrant Analysis

Average 6-hour
 Peak Turning Movements

Road Authority:	Alberta Transportation
	Lloydminster
Analysis Date:	2019 May 30, Thu
Count Date:	2017 Jun 20, Tue
Date Entry Format:	(yyyy-mm-dd)

Highway 16 / Range Road 13

Highway 16 / Range Road 13

$V_{l}=$ LEFT TURNING VOLUME (Vehicles Per Hour)

Holtby Development

Transportation Impact Assessment

Highway 16 / Range Road 13
Eastbound Left Turn Warrant

Highway 16 / Range Road 13
Westbound Left Turn Warrant

Holtby Development

Transportation Impact Assessment

Appendix B

Risk Assessment / Emergency Response Plan

IMPORTANT NOTICE:

In order for the application to be considered complete, it must include the required items indicated below AND any applicable additional supportive information requested as indicated below or during the process of reviewing your application. All required information must be attached to the application.

INCOMPLETE APPLICATIONS MAY BE RETURNED OR EXPERIENCE DELAYS

Water Supplies for Firefighting (Ponds)

For full list of tasks and inspection form sample refer to NFPA 25

General

Daily
Unobstructed access to building and fire pond as per Alberta Building
Responsibility \qquad n/a \qquad Code 3.2.5.6 (1)

Monthly

Ensure water levels are adequate for firefighting as per Alberta Building \qquad n/a \qquad Code 3.2.5.7 (1)(2) (ice depth and drought conditions need to be reported to the County if volumes do not meet code)

Yearly

Annual inspection of hydrants and roadways (repairs as needed) \qquad n/a \qquad

Emergency Lighting

\square No
\square Yes Location(s):___n/a

Emergency Power

- No
\square Yes
- Battery
\square Generator

Generator
\square Diesel \square Natural Gas

Fuel supply location: \qquad n/a \qquad
Transfer switch location:
Equipment powered by generator:
\qquad

Proper Signage

\square No

- Yes Location(s): \qquad n/a

Hazardous Area(s)

Are there hazardous material on site?
X No

- Yes Material \& quantity:
\qquad
\qquad
\qquad

Additional Supportive Information

Please list any additional supportive information that you may have to append to this form (will become part of the application:

This is a subdivision application only.
Emergency access will be provided by public roadways (see attached emergency routes).
Fire fighting capability will be by tank storage on individual lot developments supported by a shared surface water storage pond of approximately $12,000 \mathrm{~m} 3$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

I/ We, the Applicant and/or registered owner/s understand that failure to provide complete and accurate information to satisfy all the required items for my application may deem my application incomplete and may result in project processing delays.

Applicant Signature

Cyril Tomlinson
Print Name

Registered Owner Signature
Jason Holtby
Print Name

Print Name

The personal information requested on this form is being collected by the County of Vermilion River for purposes provided under Section 33(c) of the Freedom of Information and Protection of Privacy (FOIP) Act and is protected by the FOIP Act. If you have any questions about this collection, contact the County Administrator at (780)846-2244 or (780)853-5492

EMERGENCY RESPONSE ROUTES

Appendix C

Water Well Tests

Water Well Drilling Report
View in Metric Export to Excel
GIC Well ID

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GoA Well Tag No.
Drilling Company Well ID Date Report Received

Contractor Certification	Certification No
Name of Journeyman responsible for drilling/construction of well	315770
BRAD RIELAND	Copy of Well report provided to owner
Company Name	
MCALLISTER DRILLING INC.	

Water Diverted for Drilling
Water Source
Amount Taken
Diversion Date \& Time

Contractor Certification	Certification No
Name of Journeyman responsible for drilling/construction of well	315770
BRAD RIELAND	Copy of Well report provided to owner
Company Name	
MCALLISTER DRILLING INC.	

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GoA Well Tag No.
Drilling Company Well ID Date Report Received 2008/12/15

Contractor Certification	Certification No
Name of Journeyman responsible for drilling/construction of well	$35 / 313409$
KENT MCALLISTER	Copy of Well report provided to owner
Company Name	Date approval holder signed
MCALLISTER DRILLING INC.	$2007 / 10 / 17$

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Metric Export to Excel
GIC Well ID
1501401
GoA Well Tag No.
Drilling Company Well ID Date Report Received 2008/12/15

Yield Test	Taken From Ground Level		Measurement in Imperial
Test Date Start Time Static Water L	Depth to water level		
2007/10/17 12:00 AM $\quad 122.05 \mathrm{ft}$	Pumping (ft)	Elapsed Time Minutes:Sec	Recovery (ft)
Method of Water Removal	122.05	0:00	175.85
		1:00	152.72
Type Air		2:00	138.98
Removal Rate 10.00 igpm		3:00	133.43
		4:00	129.20
Depth Withdrawn From 200.13 ft		5:00	126.71
		6:00	125.33
If water removal period was < 2 hours, explain why		7:00	124.18
MEASUREMENTS FROM GROUND LEVEL, 90\% RECOVERY @ 25 MIN ,		8:00	123.69
TESTED @ 10+ GPM		9:00	123.29
		10:00	123.10
		12:00	122.80
		14:00	122.67
		16:00	122.57
		20:00	122.47
		25:00	122.44

Water Diverted for Drilling

Water Source Amount Taken
ig

Contractor Certification	Certification No
Name of Journeyman responsible for drilling/construction of well	$35 / 313409$
KENT MCALLISTER	Copy of Well report provided to owner
Company Name	Yes
MCALLISTER DRILLING INC.	2007/10/17

Water Well Drilling Report
View in Metric Export to Excel
GIC Well ID
1502092
The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GoA Well Tag No.
Drilling Company Well ID
Date Report Received 2012/11/08
GOWN ID
Measurement in Imperial

Contractor Certification	Certification No
Name of Journeyman responsible for drilling/construction of well	VA7828
GEORGE MCALLISTER	Copy of Well report provided to owner
Company Name	
MCALLISTER DRILLING INC.	

Yield Test		Taken From Ground Leve		Measurement in Imperial
Test Date Start Time	Static Water Level	Depth to water level		
2012/08/27 4:00 PM	$117.68 \mathrm{ft}$	Pumping (ft)	Elapsed Time Minutes:Sec	Recovery (ft)
Method of Water Removal		117.68	0:00	175.20
			1:00	158.23
Type Air			2:00	147.24
Removal Rate 8.00 igpm			3:00	139.76
Depth Withdrawn From 190.00 ft			4:00	134.02
			5:00	130.22
If water removal period was < 2 hours, explain why			6:00	127.43
			7:00	125.26
			8:00	123.62
			9:00	122.44
			10:00	121.65
			12:00	120.41
			14:00	119.85
			16:00	119.36
			20:00	118.96
			25:00	118.83
			30:00	118.70

Water Diverted for Drilling

Water Source	Amount Taken		Diversion Date \& Time
DUGOUT	3520.00	ig	$2012 / 08 / 26$ 7:00 AM

Contractor Certification	Certification No
Name of Journeyman responsible for drilling/construction of well	VA7828
GEORGE MCALLISTER	Copy of Well report provided to owner
Company Name	
MCALLISTER DRILLING INC.	

View in Metric Export to Excel
GIC Well ID
1502177
The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.
GOWN ID
GoA Well Tag No.
Drilling Company Well ID
Date Report Received 2013/08/23

Well Identification and Location					Measurement in Imperial						
Owner Name HURICANE IND/CITADEL MECH			Address P.O. BOX 10368			Town LLOYDMINSTER				Country CANADA	Postal Code T9V 3A5
Location	$\begin{aligned} & 1 / 4 \text { or } \operatorname{LSD} \\ & 16 \end{aligned}$	$\begin{aligned} & \text { SEC } \\ & 33 \end{aligned}$	$\begin{aligned} & \hline T W P \\ & 49 \end{aligned}$	$\begin{aligned} & \text { RGE } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { W of MER } \\ & 4 \end{aligned}$	Lot	Block	Plan Ad	Additional Description HURICANE IND./ C/O CITADEL MECHANICAL		
Measured from Boundary of ft from					GPS Coord Latitude How Locati Hand held	es in	al Degr Long S 20-3	$\begin{aligned} & \hline \text { (NAD 83) } \\ & \text { e -110.082231 } \\ & \hline \end{aligned}$	Elevation How Eleva Hand held	vation Obt d autonom	0-30m

Contractor Certification	
Name of Journeyman responsible for drilling/construction of well	Certification No
SHAWN ERB	78082A
Company Name	Copy of Well report provided to owner
MCALLISTER DRILLING INC.	Yes

Albertan Water Well Drilling Report
The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.
GOWN ID

View in Metric Export to Excel
GIC Well ID
1502177
GoA Well Tag No.
Drilling Company Well ID
Date Report Received 2013/08/23

Additional Information Measurement in Imperial

Distance From Top of Casing to Ground Level Is Artesian Flow \qquad	24.00 in	Is Flow Control Installed		
Rate igpm		Describe		
Recommended Pump Rate	15.00 igpm	Pump Installed Yes	Depth	200.00 ft
Recommended Pump Intake Depth (From TOC)	170.00 ft	Type Submersible	Make GRUNDFOS	H.P. 1.5
				ut Rating) 15 SQE-15-290

Did you Encounter Saline Water (>4000 ppm TDS)

Gas \quad| Depth |
| :--- |
| Depth |

Well Disinfected Upon Completion Yes
Geophysical Log Taken Electric
Submitted to ESRD
Sample Collected for Potability \qquad Submitted to ESRD \qquad
Additional Comments on Well
PROPOSED WELL USE: SHOP WELL, LITH: 166' - 185' ALSO CLEAN, 185' - 209' DIRTY LAYERS,

Contractor Certification	Certification No
Name of Journeyman responsible for drilling/construction of well	78082A
SHAWN ERB	Copy of Well report provided to owner
Company Name	Yes
MCALLISTER DRILLING INC.	$2013 / 08 / 09$

[^0]: ${ }^{1}$ Figure D-9.1a in Alberta Infrastructure's Highway Geometric Design Guide
 ${ }^{2}$ Figure D-9.1b in Alberta Infrastructure's Highway Geometric Design Guide

[^1]: ${ }^{3}$ Version 9.2.915.6

[^2]: ${ }^{4}$ Linear growth

